The Brevianamides: a New Class of Fungal Alkaloid

By A. J. BIRCH* and J. J. WRIGHT

(Research School of Chemistry, Australian National University, P.O. Box 4, Canberra, A.C.T.)

Summary Formulae are suggested for brevianamide-A and brevianamide-E.

PENICILLIUM BREVI-COMPACTUM gives a low yield of a mixture of related neutral compounds, mostly pigments, brevianamides A—E. Brevianamide-A is a yellow pigment, $C_{21}H_{23}N_3O_3$, with a $\dot{\psi}$ -indoxyl chromophore, the presence of which is confirmed by borohydride reduction and acid dehydration to deoxybrevianamide-A.¹ Chemical and spectral evidence was obtained for the presence of a 2,3-disubstituted indole ring in the latter. No double bonds other than those in the $\dot{\psi}$ -indoxyl system could be detected in brevianamide-A, and ozonolysis and methylation gave $C_{17}H_{24}N_2O_6$, as expected for fission of the pyrrole ring, loss of the benzene ring and indolic N.

Amide bands at 1670 and 1690 cm.⁻¹, lack of the amide-II band, and reduction by diborane of deoxybrevianamide-A to the basic $C_{21}H_{27}N_3$, suggested the presence of a diketopiperazine ring. Hydrolysis gave no simple amino-acids, but base gave an amino-acid which rapidly regenerated brevianamide-A on acidification. No evidence for the NCHCO unit of a diketopiperazine could be obtained (τ 5.5--6.1 absent); there was no exchange with MeOD and base, and no racemisation. With six rings to be expected, these positions were assumed to be involved in ring-closures.

Chemical and spectral evidence of possible biogenetic precursors was sought. The presence of CMe₂ in brevianamide-A (τ 8.70, 9.10), with differences in environment, obliterated in deoxybrevianamide-A (τ 8.48), indicates proximity of the Me₂ to the CO and NH of the $\dot{\psi}$ -indoxyl system. Both compounds show spectral evidence for an isolated CH₂ group, which in the latter compound is adjacent to the aromatic ring. Lack of other CMe resonances and the presence of a resonance at τ 6.7 (2H) similar to that due to NCH₂ in proline dimer suggested a possible proline unit. The mass spectrum showed a major loss of C₅H₉ and suggested a terpene unit.

The evidence above, biogenetic considerations, and

relations to known fungal metabolites suggested a number of possible formulae including (I). Feeding experiments were conducted with $[3^{-14}C]$ tryptophan, $[2^{-14}C]$ mevalonic lactone, $[2^{-14}C]$ acetate, $[Me^{-14}C]$ methionine and L- $[U^{14}C]$ proline (incorporations 0.6, 0.003, 0.025, 0.000, and 0.09% respectively). In view of the low yields (2—10 mg./l.) the positive incorporations were considered to be significant.

Examinations in detail of mass spectra and ¹H n.m.r. spectra, checked by irradiation, strongly support (I) for brevianamide-A and (II) for deoxybrevianamide-A. Notably dibromination of the aromatic ring, and methylation of the CONH and exchange with MeOD, permitted assignments of many mass spectral peaks.

The colourless brevian amide-E, $C_{21}H_{25}N_3O_3$, has an indoline chromophore, unaffected by acid or base. It contains OH (3600 cm.⁻¹), NH (3370 cm.⁻¹), and amide (1680, 1690 cm.⁻¹) but lacks the amide-II band at 1550 cm.⁻¹, indicating the likelihood of the presence of a diketopiperazine ring. In this case the NCHCO hydrogens are detectable in the ¹H n.m.r. spectrum, one coupled to the nonequivalent protons of an otherwise isolated CH₂ (ABX system J_{AB} 13, J_{AX} 11, J_{BX} 8Hz.). Hydrolysis gave one molar equivalent of proline. The terpene unit is present as CMe₂CH:CH₂; τ 8.75 s (2Me) and three vinylic H which

¹ B. Witkop and J. B. Patrick, J. Amer. Chem. Soc., 1951, 73, 2188.

could be assigned to $CH: CH_2$, confirmed by hydrogenation to Et. The mass spectrum shows a major loss of 69 units,

increased to 71 in the dihydro-derivative. Reduction with zinc and acetic acid gave deoxybrevianamide-E with removal of one oxygen and production of an indole chromophore. We consider brevianamide-E to be (III) and this is supported by detailed spectra.

(Received, April 15th, 1969; Com. 516.)